Mechatronic Modeling and Design with Applications in Robotics

AI in Modeling and Design

AI, Machine Learning and Deep Learning

Artificial Intelligence, Machine Learning and Deep Learning

Neural Networks

Human and Artificial Neurons

$>$ Neural networks have a long history which goes back to the first attempts to understand how the human and mammal brain works and how/what we call intelligence is formed.

Artificial Neural Networks

Each neuron is connected with other neurons via elementary structural and functional units/links, known as synapses. It is estimated that there are 50-100 trillions of synapses. These links mediate information between connected neurons.

An Engineering Approach

1943: A milestone -- Warren McCulloch and Walter Pitts, developed a computational model for the basic neuron.

Engineering Applications

$$
\begin{aligned}
& F(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\cdots \\
& F(x)=\sum_{i=0}^{\infty}\left(a_{i} \cos (i x)+b_{i} \sin (i x)\right)
\end{aligned}
$$

- A universal nonlinear approximator.
- Adaptive learning: An ability to learn how to do tasks based on the trained data.
- Self-Organization: create its own organization or representation of the information during learning time.
- Real Time Operation
- Fault Tolerance
- Application: ANNs are used when the domain of a problem is not entirely known.

Neural networks do not perform miracles. But if used sensibly they can produce some amazing results.

Activation Functions

The step function with threshold
$f(x)= \begin{cases}1 & \text { for } x \geq \theta \\ 0 & \text { for } x<\theta\end{cases}$

Sigmoid
$f(x)=\frac{1}{1+e^{-c x}}$

Pre-processing Input Data

pattern

weights

1	1	1	1	1
-1	-1	1	-1	-1
-1	-1	1	-1	-1
-1	-1	1	-1	-1
-1	-1	1	-1	-1

Feed-forward ANNs allow signals to travel on way only; from input to output. There is no feedback loops(e.g., the output of any layer does not affect the same layer)

An Example of NNs

- The inputs of the hidden layer are:
$i n_{H 1}=i_{1} \times w_{1}+i_{2} \times w_{2}+b_{1}=0.1 \times 0.35+0.5 \times 0.15+0.1=0.21$
$i n_{H 2}=i_{1} \times w_{3}+i_{2} \times w_{4}+b_{1}=0.1 \times 0.2+0.5 \times 0.4+0.1=0.32$
- The output of the hidden layer are:
out $_{H 1}=\frac{1}{1+e^{-i n_{H 1}}}=\frac{1}{1+e^{-0.21}}=0.5523$
out $_{H 2}=\frac{1}{1+e^{-i n_{H}}}=\frac{1}{1+e^{-0.32}}=0.5793$
- Repeat the process for finding the inputs of the output layer and the outputs of the output layer:
in $_{O 1}=$ out $_{H 1} \times w_{5}+$ out $_{H 2} \times w_{6}+b_{2}=0.5523 \times 0.6+0.5793 \times 0.25+0.5=0.9762$
in $_{O 2}=o u t_{H 1} \times w_{7}+o u t_{H 2} \times w_{8}+b_{2}=0.5523 \times 0.55+0.5793 \times 0.6+0.5=1.1514$
out $_{O 1}=\frac{1}{1+e^{-i n_{O 1}}}=\frac{1}{1+e^{-0.9762}}=0.7264$
out $_{O 2}=\frac{1}{1+e^{-i n_{O 2}}}=\frac{1}{1+e^{-1.1514}}=0.7598$

Training

Backpropagation:

The goal of the backpropagation training is to update the weights so that the neural network can learn and map the given input-output groups.

Basic Training Principle/Steps

1. We present the network with training examples, which consist of a pattern of activities for the input units together with the desired pattern of activities for the output units.
2. We determine how closely the actual output of the network matches the desired output.
3. We change the weight of each connection so that the network produces a better approximation of the desired output.

A Training Example

Calculating the forward path:
out $_{01}=\frac{1}{1+e^{- \text {in }}{ }_{01}}=\frac{1}{1+e^{-0.9762}}=0.7264$
out $_{O 2}=\frac{1}{1+e^{-i n_{O 2}}}=\frac{1}{1+e^{-1.1514}}=0.7598$

A Training Example (cont'd)

Calculating the total error:

$$
\begin{aligned}
& E_{\text {Total }}=\sum \frac{1}{2}(\text { target }- \text { output })^{2}=\frac{1}{2}\left(\text { target } 1-\text { out } t_{O 1}\right)^{2}+\frac{1}{2}\left(\text { target } 2-\text { out }_{O 2}\right)^{2} \\
& E_{\text {Total }}=\frac{1}{2}(0.2-0.7264)^{2}+\frac{1}{2}(0.8-0.7598)^{2}=0.1385+0.0008=0.1393 \\
& E_{O 1}=0.1385 \\
& E_{O 2}=0.0008
\end{aligned}
$$

A Training Example (cont'd)

Calculating the backward pass and update weights:

How much a change in w_{5} affects the total error:
$\frac{\partial E_{\text {Total }}}{\partial_{w 5}}=\frac{\partial E_{\text {Total }}}{\partial O U T_{O_{1}}} \times \frac{\partial O U T_{O_{1}}}{\partial I N_{O_{1}}} \times \frac{\partial I N_{O_{1}}}{\partial w_{5}} \quad$ Gradient Descent

$$
\begin{aligned}
& E_{T o t a l}=\frac{1}{2}\left(\text { target }_{O 1}-O U T_{O 1}\right)^{2}+\frac{1}{2}\left(\text { tatget }_{O 2}-O U T_{O 2}\right)^{2} \\
& \frac{\partial E_{T_{O \text { otal }}}}{\partial O U T_{O 1}}=2 \times \frac{1}{2}\left(\text { target }_{O 1}-O U T_{O 1}\right) \times(-1) \\
& \frac{\partial O U T_{O 1}}{\partial I N_{O 1}}=\text { OUT }_{O 1}\left(1-\text { OUT }_{O 1}\right) \text { because } O U T_{O 1}=\frac{1}{1+e^{-I N_{O 1}}}
\end{aligned}
$$

Finally, $I N_{O 1}=w_{5} \times O U T_{H 1}+w_{6} \times O U T_{H 2}+B_{2}$

$$
\frac{\partial I N_{O 1}}{\partial w_{5}}=O U T_{H 1}
$$

Putting them all together:
$\frac{\partial E_{\text {Total }}}{\partial w_{5}}=-\left(\right.$ target $\left._{O 1}-O U T_{O 1}\right) \times O U T_{01}\left(1-O U T_{O 1}\right) \times O U T_{H 1}$

A Training Example (cont'd)

Alternatively, we have $\frac{\partial E_{T o t a l}}{\partial O U T_{O 1}}$ and $\frac{\partial O U T_{O 1}}{\partial I N_{O 1}}$ which can be written as $\frac{\partial E_{T o t a l}}{\partial I N_{O 1}}$, aka $\delta_{O 1}$
To decrease the error, $w_{5}^{*}=w_{5}-\eta \times \frac{\partial \text { Etotal }}{\partial w_{5}}$

$$
w_{5}^{*}=w_{5}-\eta \times \frac{\partial E_{\text {Total }}}{\partial w_{5}}=0.6-0.5 \times 0.578=0.5711
$$

$$
w_{6}^{*}=0.2197
$$

$$
w_{7}^{*}=0.5520
$$

$$
w_{8}^{*}=0.6021
$$

A Training Example (cont'd)

A Training Example (cont'd)

$$
\begin{aligned}
& \frac{\partial E_{T o t a l}}{\partial w_{1}}=\frac{\partial E_{T o t a l}}{\partial O U T_{H 1}} \times \frac{\partial O U T_{H 1}}{\partial I N_{H 1}} \times \frac{\partial I N_{H 1}}{\partial w_{1}} \\
& \frac{\partial E_{T o t a l}}{\partial O U T_{H 1}}=\frac{\partial E_{O 1}}{\partial O U T_{H 1}}+\frac{\partial E_{O 2}}{\partial O U T_{H 1}} \\
& \frac{\partial E_{T o t a l}}{\partial w_{1}}=\left(\frac{\partial E_{O 1}}{\partial O U T_{H 1}}+\frac{\partial E_{O 2}}{\partial O U T_{H 1}}\right) \times \frac{\partial O U T_{H 1}}{\partial I N_{H 1}} \times \frac{\partial I N_{H 1}}{\partial w_{1}}
\end{aligned}
$$

A Training Example (cont'd)

$$
\begin{aligned}
& \frac{\partial E_{T o t a l}}{\partial w_{1}}=\left(\frac{\partial E_{O 1}}{\partial O U T_{O 1}} \times \frac{\partial O U T_{O 1}}{\partial I N_{O 1}} \times \frac{\partial I N_{O 1}}{\partial O U T_{H 1}}+\frac{\partial E_{O 2}}{\partial O U T_{O 2}} \times \frac{\partial O U T_{O 2}}{\partial I N_{O 2}} \times \frac{\partial I N_{O 2}}{\partial O U T_{H 1}}\right) \times \frac{\partial O U T_{H 1}}{\partial I N_{H 1}} \times \frac{\partial I N_{H 1}}{\partial \omega_{1}} \\
& \frac{\partial E_{T o t a l}}{\partial w_{1}}=\left(\sum\left(\delta_{O} \times w_{h o}\right)\right) \times \frac{\partial O U T_{H 1}}{\partial I N_{H 1}} \times \frac{\partial I N_{H 1}}{\partial w_{1}} \\
& w_{1}^{*}=0.3493 \\
& w_{2}^{*}=0.1464 \\
& w_{3}^{*}=0.1997 \\
& w_{4}^{*}=0.3987
\end{aligned}
$$

*Check the matlab code for detail steps and calculations!!

Delta Rule

In machine learning, the delta rule is a gradient descent learning rule for updating the weight of the inputs to artificial neurons in a single-layer neural network.

$$
\Delta w_{i j}=\alpha\left(t_{j}-y_{i}\right) g^{\prime}\left(h_{j}\right) x_{i}
$$

where
α is a small constant called learning rate
$g(x)$ is the neuraon's activiation function
t_{j} is the target output
h_{j} is the weighted sum of the neuron's inputs
y_{j} is the catual output
x_{i} is the i th input

Deep Learning

- Deep learning: a neural network has more than two hidden layers.
- A multistage information-distillation operation.

Machine Learning

- Tens of thousands of machine learning algorithms
- Hundreds new every year
- Every machine learning algorithm has three components:
- Representation
- Evaluation
- Optimization

Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.

Evolution

- Accuracy
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- Etc.
- Combinatorial optimization
- E.g.: Greedy search
- Convex optimization
- E.g.: Gradient descent
- Constrained optimization
- E.g.: Linear programming
- Supervised (inductive) learning
- Training data includes desired outputs
- Unsupervised learning
- Training data does not include desired outputs
- Semi-supervised learning
- Training data includes a few desired outputs
- Reinforcement learning
- Rewards from sequence of actions

Algorithms

- Supervised learning ($\quad\left\{x_{n} \in R^{d}, y_{n} \in R\right\}_{h=1}^{N}$
- Prediction
- Classification (discrete labels), Regression (real values)
- Unsupervised learning (
- Clustering

$$
\left\{x_{n} \in R^{d}\right\}_{n=1}^{N}
$$

- Probability distribution estimation
- Finding association (in features)
- Dimension reduction
- Semi-supervised learning
- Reinforcement learning
- Decision making (robot, chess machine)

Learning System Model

Genetic Algorithm

Introduction

EA attempts to simulate the process of evolution.
Understanding the system (e.g., human brain)
The driving force behind the creation/evolution

arsforsi

History (Inheritance)

Charles Darwin: Natural Selection

- Huge lizards, strange birds and Giant Tortoises Galapagos Island.

The Discovery of Inheritance

	Original (true) Parent a TT (tall)	$\begin{aligned} & \text {) Generation (F0) } \\ & \text { Parent } b \\ & \text { ssmall) } \\ & \text { (mmen } \end{aligned}$	Factors were inherited in pairs, one from each parent plant.
	First Filial ge Child a Ts (tall)	neration (F1) Child b Ts (tall)	T is dominant and S is regressive
$\begin{gathered} \text { Grandchild } a \\ \text { (TT) } a \\ \text { (tall) } \end{gathered}$	Second Filial Grandchild b Ts (tall)	generation (F2) Grandchild c (tall)	Grandchild d s. (small)

History (Chromosomes and DNA)

The Discovery of Chromosomes and DNA (1903)

GA: Artificial version of Biological Evolution, allowing the fittest to survive while killing off the weakest.

* Stochastic optimization technique
* Ability to escape from local optimal solutions (Gradient methods do not have this property.)
* The algorithm consists of:
a) coding the problem
b) generating an initial population
c) evaluating fitness
d) crossover (breeding) and
e) mutation

An Example

Solve: $\max f(x), f(x)=20+100 x \cos (4 \pi x) e^{-2 x} x \in[0,1.5]$

Procedure of GA

- Selection: Selection of fit individuals for reproduction
- Crossover: Mating of selected individuals for reproduction
- Mutation: Introduction of new alleles into chromosomes in the population, to create completely new solutions
i. New population is produced by mating the best individuals
ii. Over generations, desirable characteristics are spread throughout population
iii. Mutation is used to escape from a local minimum

Initialization of Individuals

Generate randomly initial population of $\mathrm{N}(=10)$ chromosomes. (required precision: 3 decimal points)
Note: Population size 2^{n}; $n=$ number of don't care genes

decimal	0.000	\leftrightarrow	1.500
binary	00000000000	\leftrightarrow	11111111111

chromosome	binary encoding	decimal value
x_{1}	00010010100	0.1085
x_{2}	11001100111	1.2010
x_{3}	11001101001	1.2025
x_{4}	10100110001	0.9739
x_{5}	11001110111	1.2128
x_{6}	01101111101	0.6544
x_{7}	00000010110	0.0161
x_{8}	11110100000	1.4304
x_{9}	10110001011	1.0398
x_{10}	00000011110	0.0220

Calculate fitness values for the chromosomes:

$$
f(x)=20+100 x \cos (4 \pi x) e^{-2 x}, \quad i=1,2, \ldots 10
$$

chromosome	binary encoding	decimal value	fitness value
x_{1}	00010010100	0.1085	21.8025
x_{2}	11001100111	1.2010	11.1218
x_{3}	11001101001	1.2025	11.0231
x_{4}	10100110001	0.9739	33.1448
x_{5}	11001110111	1.2128	10.4288
x_{6}	01101111101	0.6544	13.6220
x_{7}	00000010110	0.0161	21.5290
x_{8}	11110100000	1.4304	25.2480
x_{9}	10110001011	1.0398	31.4024
x_{10}	00000011110	0.0220	22.0240

- Crossover: Exchanges some genes of the two parents to create the genotypes of the offspring
- Method: Select points along parents' chromosomes (randomly) and exchange genes between these points
Note: In Simple Crossover, only one point is chosen. See Figure

Introduces completely new alleles into a population of chromosomes Creates completely new solutions (avoids stagnation)
Method: Select one or more genes in an individual at random and change their alleles Note: Allele change itself can be random or deterministic fashion

Select N chromosomes in the next generation ($\mathrm{t}+1$) from N chromosomes in the current generation (t . Compute the probability of x_{i} being selected: $P\left(x_{i}\right):=\frac{f\left(x_{i}\right)}{\sum_{j=1}^{10} f\left(x_{i}\right)}$

chromosome	binary encoding	decimal value	fitness value	$p\left(x_{i}\right)$
x_{1}	00010010100	0.1085	21.8025	0.1083
x_{2}	11001100111	1.2010	11.1218	0.0552
x_{3}	11001101001	1.2025	11.0231	0.0547
x_{4}	10100110001	0.9739	33.1448	0.1646
x_{5}	11001110111	1.2128	10.4288	0.0518
x_{6}	01101111101	0.6544	13.6220	0.0677
x_{7}	00000010110	0.0161	21.5290	0.1069
x_{8}	11110100000	1.4304	25.2480	0.1254
x_{9}	10110001011	1.0398	31.4024	0.1560
x_{10}	00000011110	0.0220	22.0240	0.1094

chromosome	binary encoding	decimal value	fitness value
x_{1}	00000011110	0.0220	22.0240
x_{2}	00000011110	0.0220	22.0240
x_{3}	11001101001	1.2025	11.0231
x_{4}	10100110001	0.9739	33.1448
x_{5}	10110001011	1.0398	31.4024
x_{6}	10110001011	1.0398	31.4024
x_{7}	10100110001	0.9739	33.1448
x_{8}	10110001011	1.0398	31.4024
x_{9}	10100010001	0.939	33.1448
x_{10}	0000010110	0.0161	21.5290

Generic Operation

Crossover: Exchange some genes of two parents

parent 1	$101001 \mid 1011$
parent 2	$010111 \mid 0010$
	\Downarrow
child 1	$101001 \mid 0010$
child 2	$010111 \mid 1011$

before 1010010010
$\downarrow \Downarrow$
after 1110010010

After Genetic Operation

chromosome	binary encoding	decimal value	fitness value
x_{1}	000000010111	0.0081	20.7891
x_{2}	00000011110	0.0220	22.0240
x_{3}	11001101001	1.2025	11.0231
x_{4}	10100110001	0.9739	33.1448
x_{5}	10110011110	1.0537	29.9967
x_{6}	10110001011	1.0398	31.4024
x_{7}	10100110001	0.9739	33.1448
x_{8}	10110001011	1.0398	31.4024
x_{9}	10100110001	0.9739	33.1448
x_{10}	00000110110	0.0396	23.2132

chromosome	binary encoding	decimal value	fitness value
x_{1}	01010010001	0.4814	37.8831
x_{2}	01011101011	0.5474	35.1638
x_{3}	01010010001	0.4814	37.8831
x_{4}	01010010001	0.4814	37.8831
x_{5}	01011011001	0.5342	36.6842
x_{6}	01011011001	0.4873	38.1542
x_{7}	01010101011	0.5050	38.3936
x_{8}	01011010001	0.5283	37.2136
x_{9}	01000011001	0.3835	24.1274
x_{10}	01010011001	0.4873	38.1542

The End!!

